it-swarm-es.com

¿Cómo puedo crear un perfil de MySQL?

¿Qué herramientas existen para perfilar MySQL, como lo hace MSSQL 2000+ con SQL Profiler?

Me gustaría rastrear cosas como declaraciones SQL ejecutadas, tiempos de ejecución, plan de ejecución, etc.

17
spoulson
11
David Schmitt

si tiene activado el registro de consultas en su entorno de producción/prueba [que no es necesario en el caso], puede usar mk-query-digest from maatkit toolkit. le ayudará a determinar qué consultas son más frecuentes/tardan más, etc.

5
pQd

También puede consultar MySQLTuner

3
talonx

Otra opción comercial es MySQL Query Analyzer que es parte del MySQL Enterprise Monitor. Lo he encontrado moderadamente útil para ayudar a perfilar consultas extrañas para encontrar formas de mejorar su rendimiento.

3
Travis Campbell

Aquí hay un buen artículo sobre el generador de perfiles de MySQL. Aunque eche un vistazo a la declaración explicar .

2
Node

He usado varios scripts y otras herramientas que son geniales, pero encontré Jet Profiler realmente bueno para brindar monitoreo y visualización en tiempo real de lo que está sucediendo y cómo están cambiando las cosas. La versión completa cuesta dinero, pero la versión gratuita restringida también es útil y le da una buena idea de lo que puede hacer la versión completa.

0
Jarod Elliott

Recomiendo encarecidamente lo siguiente

De la antigua documentación MAATKIT

 Column        Meaning
 ============  ==========================================================
 Rank          The query's rank within the entire set of queries analyzed
 Query ID      The query's fingerprint
 Response time The total response time, and percentage of overall total
 Calls         The number of times this query was executed
 R/Call        The mean response time per execution
 Apdx          The Apdex score; see --apdex-threshold for details
 V/M           The Variance-to-mean ratio of response time
 EXPLAIN       If --explain was specified, a sparkline; see --explain
 Item          The distilled query

En el DBA StackExchange respondí Efectos de rendimiento del registro de consultas generales de MySQL . En mi publicación anterior, sugerí usar mk-query-digest en lugar del registro general o el registro lento. De esa publicación, aquí está el resultado de muestra del perfil de consulta realizado por mk-query-digest:

# Rank Query ID           Response time    Calls   R/Call     Item
# ==== ================== ================ ======= ========== ====
#    1 0x812D15015AD29D33   336.3867 68.5%     910   0.369656 SELECT mt_entry mt_placement mt_category
#    2 0x99E13015BFF1E75E    25.3594  5.2%     210   0.120759 SELECT mt_entry mt_objecttag
#    3 0x5E994008E9543B29    16.1608  3.3%      46   0.351321 SELECT schedule_occurrence schedule_eventschedule schedule_event schedule_eventtype schedule_event schedule_eventtype schedule_occurrence.start
#    4 0x84DD09F0FC444677    13.3070  2.7%      23   0.578567 SELECT mt_entry
#    5 0x377E0D0898266FDD    12.0870  2.5%     116   0.104199 SELECT polls_pollquestion mt_category
#    6 0x440EBDBCEDB88725    11.5159  2.3%      21   0.548376 SELECT mt_entry
#    7 0x1DC2DFD6B658021F    10.3653  2.1%      54   0.191949 SELECT mt_entry mt_placement mt_category
#    8 0x6C6318E56E149036     8.8294  1.8%      44   0.200667 SELECT schedule_occurrence schedule_eventschedule schedule_event schedule_eventtype schedule_event schedule_eventtype schedule_occurrence.start
#    9 0x392F6DA628C7FEBD     8.5243  1.7%       9   0.947143 SELECT mt_entry mt_objecttag
#   10 0x7DD2B294CFF96961     7.3753  1.5%      70   0.105362 SELECT polls_pollresponse
#   11 0x9B9092194D3910E6     5.8124  1.2%      57   0.101973 SELECT content_specialitem content_basecontentitem advertising_product organizations_neworg content_basecontentitem_item_attributes
#   12 0xA909BF76E7051792     5.6005  1.1%      55   0.101828 SELECT mt_entry mt_objecttag mt_tag
#   13 0xEBE07AC48DB8923E     5.5195  1.1%      54   0.102213 SELECT rssfeeds_contentfeeditem
#   14 0x3E52CF0261A7C3FF     4.4676  0.9%      44   0.101536 SELECT schedule_occurrence schedule_occurrence.start
#   15 0x9D0BCD3F6731195B     4.2804  0.9%      41   0.104401 SELECT mt_entry mt_placement mt_category
#   16 0x7961BD4C76277EB7     4.0143  0.8%      18   0.223014 INSERT UNION UPDATE UNION mt_session
#   17 0xD2F486BA41E7A623     3.1448  0.6%      21   0.149754 SELECT mt_entry mt_placement mt_category mt_objecttag mt_tag
#   18 0x3B9686D98BB8E054     2.9577  0.6%      11   0.268885 SELECT mt_entry mt_objecttag mt_tag
#   19 0xBB2443BF48638319     2.7239  0.6%       9   0.302660 SELECT rssfeeds_contentfeeditem
#   20 0x3D533D57D8B466CC     2.4209  0.5%      15   0.161391 SELECT mt_entry mt_placement mt_category

Por encima de esta salida se encuentran los histogramas de estas 20 consultas con el peor rendimiento

Ejemplo del histograma de la primera entrada

# Query 1: 0.77 QPS, 0.28x concurrency, ID 0x812D15015AD29D33 at byte 0 __
# This item is included in the report because it matches --limit.
#              pct   total     min     max     avg     95%  stddev  median
# Count         36     910
# Exec time     58    336s   101ms      2s   370ms   992ms   230ms   393ms
# Lock time      0       0       0       0       0       0       0       0
# Users                  1      mt
# Hosts                905 10.64.95.74:54707 (2), 10.64.95.74:56133 (2), 10.64.95.80:33862 (2)... 901 more
# Databases              1     mt1
# Time range 1321642802 to 1321643988
# bytes          1   1.11M   1.22k   1.41k   1.25k   1.26k   25.66   1.20k
# id            36   9.87G  11.10M  11.11M  11.11M  10.76M    0.12  10.76M
# Query_time distribution
#   1us
#  10us
# 100us
#   1ms
#  10ms
# 100ms  ################################################################
#    1s  ###
#  10s+
# Tables
#    SHOW TABLE STATUS FROM `mt1` LIKE 'mt_entry'\G
#    SHOW CREATE TABLE `mt1`.`mt_entry`\G
#    SHOW TABLE STATUS FROM `mt1` LIKE 'mt_placement'\G
#    SHOW CREATE TABLE `mt1`.`mt_placement`\G
#    SHOW TABLE STATUS FROM `mt1` LIKE 'mt_category'\G
#    SHOW CREATE TABLE `mt1`.`mt_category`\G
# EXPLAIN
SELECT `mt_entry`.`entry_id`, `mt_entry`.`entry_allow_comments`, `mt_entry`.`entry_allow_pings`, `mt_entry`.`entry_atom_id`, `mt_entry`.`entry_author_id`, `mt_entry`.`entry_authored_on`, `mt_entry`.`entry_basename`, `mt_entry`.`entry_blog_id`, `mt_entry`.`entry_category_id`, `mt_entry`.`entry_class`, `mt_entry`.`entry_comment_count`, `mt_entry`.`entry_convert_breaks`, `mt_entry`.`entry_created_by`, `mt_entry`.`entry_created_on`, `mt_entry`.`entry_excerpt`, `mt_entry`.`entry_keywords`, `mt_entry`.`entry_modified_by`, `mt_entry`.`entry_modified_on`, `mt_entry`.`entry_ping_count`, `mt_entry`.`entry_pinged_urls`, `mt_entry`.`entry_status`, `mt_entry`.`entry_tangent_cache`, `mt_entry`.`entry_template_id`, `mt_entry`.`entry_text`, `mt_entry`.`entry_text_more`, `mt_entry`.`entry_title`, `mt_entry`.`entry_to_ping_urls`, `mt_entry`.`entry_week_number` FROM `mt_entry` INNER JOIN `mt_placement` ON (`mt_entry`.`entry_id` = `mt_placement`.`placement_entry_id`) INNER JOIN `mt_category` ON (`mt_placement`.`placement_category_id` = `mt_category`.`category_id`) WHERE (`mt_entry`.`entry_status` = 2  AND `mt_category`.`category_basename` IN ('business_review' /*... omitted 3 items ...*/ ) AND NOT (`mt_entry`.`entry_id` IN (53441))) ORDER BY `mt_entry`.`entry_authored_on` DESC LIMIT 4\G
0
RolandoMySQLDBA

Yo uso este pequeño guión. Siempre me ha sido útil, aunque no oficial.

http://genomewiki.ucsc.edu/index.php/Tuning-primer.sh

0
mercutio

Ver: https://sites.google.com/site/basicsqlmanagment/ Funciona para mí, no es un generador de perfiles de proxy

0
Paul